Midterm - Optimization (2023-24)
 Time: 3 hours.

Attempt all questions. The total marks is 30. You may quote any result proved in class without proof.

1. Consider the following linear program: minimize $-x_{1}-2 x_{2}+x_{3}+2 x_{4}-6 x_{5}$ subject to $x_{1} \geq 0, x_{2} \geq 0, x_{3} \leq 0, x_{4} \leq 0$ and x_{5} free, and

$$
\begin{array}{cccccc}
-x_{1} & & -x_{3} & +x_{4} & -x_{5} & \geq 1 \\
& -x_{2} & +x_{3} & +4 x_{4} & -2 x_{5} & \geq 3
\end{array}
$$

(a) Find the dual of the above problem. [2 marks]
(b) Find the optimal cost of the above problem. [2 marks]
2. Consider the problem: minimize $2 x_{1}+3\left|x_{2}-10\right|$ subject to $x_{1}+x_{2} \leq 5$. Reformulate this as a linear programming problem. [$\mathbf{2}$ marks]
3. A polyhedron is represented by a system of equality and inequality constraints.
(a) Give an example of a polyhedron P and a point \mathbf{x}, and two representations of P, such that \mathbf{x} is a basic solution under one representation but is not a basic solution under the other representation. [2 marks]
(b) Can one create an example of P with two representations, and an \mathbf{x} such that \mathbf{x} is a basic feasible solution (bfs) under one representation and not a bfs under the other representation? Explain. [2 marks]
4. Suppose that $\left\{\mathbf{x} \in \mathbf{R}^{n}: \mathbf{a}_{i}^{T} \mathbf{x} \geq b_{i}, i=1,2 \cdots m\right\}$ and $\left\{\mathbf{x} \in \mathbf{R}^{n}: \mathbf{g}_{i}^{T} \mathbf{x} \geq h_{i}, i=\right.$ $1,2 \cdots, k\}$ are two representations of the same nonempty polyhedron. Suppose that the vectors $\mathbf{a}_{1}, \cdots \mathbf{a}_{m}$ span \mathbf{R}^{n}. Show that the same must be true for the vectors $\mathbf{g}_{1}, \cdots, \mathbf{g}_{k}$. [5 marks]
5. Solve the following linear program. [5 marks]

$$
\begin{array}{ccccl}
\operatorname{minimize} & -3 x_{1} & -2 x_{2} & +5 x_{3} & \\
\text { such that } & 4 x_{1} & -2 x_{2} & +2 x_{3} & \leq 4, \\
& 2 x_{1} & -x_{2} & +x_{3} & \leq 1, \\
\text { and all } & x_{1}, & x_{2}, & x_{3} & \geq 0
\end{array}
$$

6. Consider the uncapacitated network flow problem on the directed graph in the following page. The numbers next to each directed arc \rightarrow is the cost associated to the arc, while the numbers next to \Rightarrow is the external supply/demand at the node.
Denote by \mathbf{c} the vector of costs corresponding to the arc. We are interested in minimizing the total cost $\mathbf{c}^{T} \mathbf{f}$, where the flow vector \mathbf{f} satisfies the flow conservation equations and $\mathbf{f} \geq \mathbf{0}$.
(a) Find an optimal basic feasible solution (feasible tree solution) to the problem. (You can start with the tree given by the dotted lines) [6 marks]
(b) Find the optimal cost for the problem. [1 marks]
(c) Find the dual vector which gives the same optimal cost. [3 marks]

