Midterm - Optimization (2023-24) Time: 3 hours.

Attempt all questions. The total marks is 30. You may quote any result proved in class without proof.

1. Consider the following linear program: minimize $-x_1 - 2x_2 + x_3 + 2x_4 - 6x_5$ subject to $x_1 \ge 0, x_2 \ge 0, x_3 \le 0, x_4 \le 0$ and x_5 free, and

- (a) Find the dual of the above problem. [2 marks]
- (b) Find the optimal cost of the above problem. [2 marks]
- 2. Consider the problem: minimize $2x_1 + 3|x_2 10|$ subject to $x_1 + x_2 \le 5$. Reformulate this as a linear programming problem. [2 marks]
- 3. A polyhedron is represented by a system of equality and inequality constraints.
 - (a) Give an example of a polyhedron P and a point x, and two representations of P, such that x is a basic solution under one representation but is not a basic solution under the other representation. [2 marks]
 - (b) Can one create an example of P with two representations, and an \mathbf{x} such that \mathbf{x} is a basic *feasible* solution (bfs) under one representation and not a bfs under the other representation? Explain. [2 marks]
- 4. Suppose that $\{\mathbf{x} \in \mathbf{R}^n : \mathbf{a}_i^T \mathbf{x} \geq b_i, i = 1, 2 \cdots m\}$ and $\{\mathbf{x} \in \mathbf{R}^n : \mathbf{g}_i^T \mathbf{x} \geq h_i, i = 1, 2 \cdots, k\}$ are two representations of the same nonempty polyhedron. Suppose that the vectors $\mathbf{a}_1, \cdots, \mathbf{a}_m$ span \mathbf{R}^n . Show that the same must be true for the vectors $\mathbf{g}_1, \cdots, \mathbf{g}_k$. [5 marks]
- 5. Solve the following linear program. [5 marks]

minimize	$-3x_{1}$	$-2x_{2}$	$+5x_{3}$	
such that	$4x_1$	$-2x_{2}$	$+2x_{3}$	$\leq 4,$
	$2x_1$	$-x_{2}$	$+x_{3}$	$\leq 1,$
and all	$x_1,$	$x_2,$	x_3	$\geq 0.$

6. Consider the *uncapacitated* network flow problem on the directed graph in the following page. The numbers next to each directed arc \rightarrow is the *cost* associated to the arc, while the numbers next to \Rightarrow is the external *supply/demand* at the node.

Denote by **c** the vector of costs corresponding to the arc. We are interested in minimizing the total cost $\mathbf{c}^T \mathbf{f}$, where the flow vector \mathbf{f} satisfies the flow conservation equations and $\mathbf{f} \ge \mathbf{0}$.

- (a) Find an optimal basic feasible solution (feasible tree solution) to the problem.(You can start with the tree given by the dotted lines) [6 marks]
- (b) Find the optimal cost for the problem. [1 marks]
- (c) Find the dual vector which gives the same optimal cost. [3 marks]

